Reaching for upper bound ROUGE score of extractive summarization methods
Reaching for upper bound ROUGE score of extractive summarization methods
Blog Article
The extractive text summarization (ETS) method for finding the salient information from a text automatically uses the exact sentences from the source text.In this article, we answer the question of what quality of a summary we can achieve with ETS methods? To maximize the ROUGE-1 score, we used five approaches: (1) adapted reduced variable neighborhood search (RVNS), (2) Greedy algorithm, (3) VNS initialized by Greedy algorithm results, (4) genetic algorithm, and (5) genetic algorithm initialized by the Greedy algorithm results.Furthermore, Detection of Anti-Erythrocyte Antibodies in Dogs with Inflammatory Bowel Disease (IBD) we ran experiments on articles from the arXive dataset.As a result, we found 0.59 and 0.
25 scores for ROUGE-1 and ROUGE-2, respectively achievable by the approach, where the genetic algorithm initialized by the Greedy algorithm results, which happens to yield the best results out of the tested approaches.Moreover, those scores Increasing levels of zeolite and Yucca schidigera in diets for adult cats appear to be higher than scores obtained by the current state-of-the-art text summarization models: the best score in the literature for ROUGE-1 on the same data set is 0.46.Therefore, we have room for the development of ETS methods, which are now undeservedly forgotten.